New perspectives in Magnonics: from 2D to 3D systems 


Organisers

Gianluca Gubbiotti 

Maciej Krawczyk 

Paul Keatley 

Keywords: Magnonics, Spin waves, 3D nanostructures 

Magnonics, the research field that uses spin waves, the collective excitations of ordered magnetic materials, or magnons (their quanta) as a tool for signal processing, communication and computation have rapidly grown during the last decade due to the low-energy-consumption property and potential compatibility to the next generation of circuits beyond CMOS electronics.  

Today’s approaches to integrated magnonic elements use magnon waveguides which are mostly in a planar architecture and can thus be patterned out of an extended layer which is deposited on a flat substrate.  

The goal of this minicolloquium is to exploit the third dimension by stacking multi-layered structures and exploring 3D magnetization textures and nano-objects, curved surfaces and cavity magnonics [1,2,3,4] in which the magnons can propagate and which at the same time allow for interlayer exchange/dipolar coupling between different layers to implement novel functionalities. 

To integrate magnonic nanodevices in the magnonic networks requires the easy fabrication of interconnections between the functional blocks localized in the different layers of the whole magnonic circuit. 

Use the third, vertical, dimension for enhancing/steering effective coupling between elements arranged on the plane paves the way toward brain inspired networks. 

Fig. 1 shows some possible interconnections between magnonic waveguide stacking, crossing and networks placed at different heights. 

Figure 1: Schematic drawings of multilevel magnonic directional coupler architectures. 


References

[1] Gubbiotti G (ed) 2019 Three Dimensional Magnonics: Layered Micro-and Nanostructures (New York: Jenny Stanford Publishing). 

[2] P. Fischer, D. Sanz-Hernandez, R. Streubel, and A. Fernandez-Pacheco, APL Mater. 8, 010701 Dec. 2020. 

[3] A. Barman et al 2021 J. Phys.: Condens. Matter 33 413001. 

[4] S. Sahoo, A. May, A. van Den Berg, A. K. Mondal, S. Ladak, and A. Barman, Nano Lett. 21, pp. 4629−4635, May 2021. 

[5] P. Graczyk, M. Krawczyk, S. Dhuey, W.-G. Yang, H. Schmidt, and G. Gubbiotti, Phys. Rev. B 98, p. 174420, Nov. 2018. 

[6] K. Szulc K, P. Graczyk, M. Mruczkiewicz, G. Gubbiotti and M. Krawczyk, Phys. Rev. Appl. 14 034063 (2020) 

[7] J. Chen et al, Phys. Rev. B 100, p. 104427 (2019). 

[8] H. Wang et al, ACS Nano 15, pp. 9076-9083, May 2021. 

[9] S. Hamalainen, M. Madami, H. Qin, G. Gubbiotti and S. van Dijken, Nat. Commun. 9 4853 (2018). 


     Terms & Conditions           Refund policy           Send Feedback            Privacy Policy           Code of Conduct           About IOP          Careers       


© 2021 IOP All rights reserved.
The Institute is a charity registered in England and Wales (no. 293851) and Scotland (no. SC040092)